для чего нужен swap в linux

Содержание
  1. SWAP — как создать, подключить, очистить и отключить файл подкачки в Linux
  2. Что такое SWAP
  3. Когда может понадобиться своп
  4. Преимущества SWAP
  5. Недостатки SWAP
  6. Как создать и подключить файл подкачки SWAP
  7. Проверка наличия свопа в системе
  8. Проверка наличия свободного места на диске
  9. Какого размера создать swap
  10. Создание файла SWAP
  11. Как подключить SWAP файл
  12. Добавление свопа в автозагрузку
  13. Дополнительные вопросы
  14. Как очистить SWAP в Linux
  15. Почему линукс использует swap-файл
  16. В начале был … вопрос
  17. Какие группы страниц памяти живут в системе?
  18. Работа процесса
  19. Откуда (и когда) начинается использование swap-файла?
  20. А если бы у нас был настоящий swap-файл?
  21. Какие выводы можно сделать из всего вышеописанного?
  22. Резюме?
  23. Для чего нужен swap в linux
  24. Размещение
  25. Безопасность
  26. Размер
  27. Создание SWAP на разделе диска
  28. SWAP с динамически изменяемым размером
  29. Hibernate (suspend to disk, гибернация)
  30. Параметр vm.swappiness
  31. Какое значение выбрать?
  32. В защиту swap’а [в Linux]: распространенные заблуждения
  33. Предисловие
  34. Введение
  35. Типы памяти
  36. Память с высвобождением и без
  37. О природе swap’а
  38. Что происходит с использованием swap и без него
  39. Без конкуренции или с малой конкуренцией за память
  40. С умеренной или высокой конкуренцией за память
  41. При временных всплесках в потреблении памяти
  42. Окей, я хочу системный swap, но как его настроить для конкретных приложений?
  43. Тюнинг
  44. Сколько же swap’а мне тогда нужно?
  45. Какой должна быть настройка swappiness?

SWAP — как создать, подключить, очистить и отключить файл подкачки в Linux

Что такое SWAP

SWAP (своп) — это механизм виртуальной памяти, при котором часть данных из оперативной памяти (ОЗУ) перемещается на хранение на HDD (жёсткий диск), SSD (твёрдотельный накопитель), флеш-накопитель или иное вторичное хранилище. Как правило, swapping (свопинг) происходит, когда оперативная память переполнена, и ей для работы требуется дополнительное пространство.

Когда может понадобиться своп

Зачастую, от недостатка свободной памяти первой страдает база данных. Вы можете сталкиваться с проблемами типа:

При подобных симптомах и ошибках может помочь своппинг.

Преимущества SWAP

Сравнение стоимости оперативной памяти и SSD
(цены актуальны на 7 июля 2017 года) IHOR FirstVDS
Оперативная память, в среднем за 1 гигабайт 100 рублей в месяц 170 рублей в месяц
SSD, в среднем за 1 гигабайт 10 рублей в месяц 13 рублей в месяц

Как видно из таблицы, экономия выйдет примерно в 10 раз.

Недостатки SWAP

SWAP — это не замена оперативной памяти, а всего лишь его поддержка.

Как создать и подключить файл подкачки SWAP

Проверка наличия свопа в системе

Для начала, нужно убедиться, что своп ещё не подключен:

Если команда выдала пустой результат или что-то навроде:

— значит, своп, скорее всего отсутствует.

Дополнительно проверим командой:


Если в таблице в строке swap стоит 0, значит своп отсутствует.

Проверка наличия свободного места на диске

Теперь, надо проверить, сколько свободного места есть на диске:

В результате, мы увидим что-то подобное:

Как мы видим, доступно 9 гигабайт дискового пространства — вполне достаточно, чтобы создать своп-файл.

Какого размера создать swap

Исходите из принципа — сколько может понадобиться, столько и выделяйте. Как правило, можно начинать с размера объёма оперативной памяти, либо его удвоенного количества. Например, если у вас в системе 2 гигабайта оперативки, своп можно сделать размером 2-4 гигабайта, как правило, этого должно хватать. Но, Вы можете скорректировать его размер под себя.

Создание файла SWAP

Допустим, мы хотим создать swap-файл размером 4 гигабайта.
Далее, здесь существует 2 подхода, традиционный медленный и новый быстрый:

Быстрый способ Используем fallocate :

Синтаксис команды простой:

Будьте очень внимательны с синтаксисом команды, потому что если, например, ошибиться с определением пути для of= (куда сохранять файл), можно повредить данные на диске.

Теперь, когда файл создан, проверим результат:

В результате увидим:
-rw-r—r— 1 root root 4.0G Jul 07 16:16 /swapfile
Как видим, файл создался верно и с нужным объёмом.

Как подключить SWAP файл

Для начала, ограничим права доступа к вновь созданному файлу.

Предоставление другим пользователям возможности читать или писать в этот файл будет представлять собой огромный риск для безопасности, поэтому ограничение командой ниже строго обязательно:

В результате, мы должны увидеть подобное:
-rw——- 1 root root 4.0G Jul 07 16:16 /swapfile
Права прописаны верно.

Теперь нужно сделать из swapfile файл подкачки:

В результате, увидим примерно следующее:
Setting up swapspace version 1, size = 4193300 KiB
no label, UUID=e5f3e9cf-c1a9-4ed4-b8ab-711b6a7d6544

Теперь, файл готов в роли свопа. Подключим его к системе:

Если на данном этапе выходит похожая ошибка, значит, скорее всего, своп запрещено подключать в систему. Такое ограничение часто ставят на VDS с виртуализацией OpenVZ. Рекомендую использовать IHOR, сервера от 100 рублей в месяц и виртуализация KVM позволяют включать SWAP.

Всё, теперь своп подключен и работает. Осталось проверить правильность работы самой первой командой:

Своп также будет виден в стандартных командах:

Всё, теперь точно, своп в системе готов и будет использоваться при необходимости.

Добавление свопа в автозагрузку

Чтобы при перезагрузке сервера своп автоматически подтягивался в систему, нужно прописать его в /etc/fstab :

Теперь система знает, где и как при перезагрузке искать и подключать своп.
Проверить, подключен ли своп в автозагрузке, можно с помощью редактора:

Дополнительные вопросы

Как очистить SWAP в Linux

Вообще, это делается с помощью отключения и включения свопа.

Однако, я не рекомендую прибегать к этому способу, так как swap просто очищается, а не переносится в ОЗУ, и, в случае наличия данных системных процессов, система может стать недоступна.

Источник

Почему линукс использует swap-файл

Эта статья является обзорной и предназначена для того, чтобы дать представление об общих процессах, происходящих в системе, и объяснить, откуда берутся некоторые мифы, следование которым может доставить неприятные моменты

В начале был … вопрос

И когда процесс пытается получить доступ к какой-то странице своей памяти, MMU (memory management unit) процессора фактически производит обращение к той странице физической оперативной памяти, куда страница отображена.

Какие группы страниц памяти живут в системе?

Страницы физической памяти

Свободная — страница физической памяти, которая не используется для хранения данных и может быть свободно использована в любой момент времени

Используемая — страница, хранящая данные, не принадлежащие кэшу

Страница анонимного кэша (anonymous page cache) — страница числится как принадлежащая кэшу, но не закрепленная ни за каким файлом. Очень похожа на используемую страницу (и в определенных ситуациях может превращаться в неё)

Чистая страница кэша (clean cache page)- страница, в которой хранятся закэшированные данные файла, которые не менялись.

Грязная страница кэща (dirty cache page) — страница, в которой хранятся данные файла, которые были изменены (данные в кэше поменяли но на диск изменения не сохранили)

Страница процесса, в свою очередь, также может иметь несколько состояний

Недоступная — процесс не имеет права на доступ к этой странице. Если процесс к ней обращается «неподобающим образом» то получает SEGFAULT

Доступная, сопоставленная физической странице, не принадлежащей кэшу. Процесс может работать с этой страницей

Доступная, сопоставленная физической странице кэша, в которую загружены данные файла. Процесс может работать с этой страницей.

Доступная, не сопоставленная физической странице, но сопоставленная региону какого-либо файла. Прежде чем процесс сможет работать с этой страницей, система должна выделить физическую страницу, отдать ее в кэш, загрузить в нее данные из файла — и после этого процесс сможет с ней работать (потому, что она превратится в предыдущую разновидность)

И сейчас, когда мы более-менее определились с видами страниц, мы переходим к самой интересной части

Работа процесса

Чтобы понять как все эти механизмы связаны и работают, давайте рассмотрим запуск нового процесса. Мы запускаем новый процесс, и система загружает исполняемый файл. Как это происходит?

Система открывает бинарный файл с программой и … Нет, она не читает его. Она отображает файл в адресное пространство процесса — то есть создает записи (например)

Ну да, там всё сложнее — но нам сейчас главное понять идею.

С точки зрения системы, эти логические страницы принадлежат процессу, отображены на какой-то файл файловой системы и не сопоставлены никакой физической странице. И теперь, управление отдается процессу — например вызывается инструкция с какой-то страницы или читаются или записываются данные в страницу.

процессу разрешен доступ

физической странице не сопоставлена (и это логично, иначе бы page fault не возник)

но сопоставлена сегменту файла

указанный фрагмент файла в кэше не обнаружен

Если же в кэше системы уже есть физическая страница, в которой лежат данные из файла в неизменном виде (найдена чистая страница кэша), то страница процесса просто начинает ссылаться на обнаруженную страницу кэша.

Точно такие же процессы происходят для разделяемых библиотек (бинарник программы, на самом деле, тоже фактически разделяемая библиотека, которая просто содержит специальную точку входа).

Второе «примечание»: механизмы работы с отображаемыми в память файлами намного сложнее и если за них браться, эта статья превратилась бы в многостраничный трактат. Но нам сейчас надо понять основные линии поведения системы в стрессовых условиях нехватки RAM

Откуда (и когда) начинается использование swap-файла?

Представим, что мы загрузили большой бинарник с большим количеством библиотек (привет, браузер!) в котором открыли сколько-то вкладок с документами, и исчерпали доступную физическую память. При этом, у нас образуется две больших группы страниц — чистые страницы кэша, сопоставленные разделяемым библиотекам — причем в этих страницах содержится использующийся код (мы ведь помним про то, что библиотеки загружаются «по мере необходимости») и приватные страницы процесса или страницы anonymous page cache (этот механизм часто используется для предварительной аллокации памяти). Но, в обоих случаях, мы можем рассматривать их как данные процесса.

Свободных страниц у нас нет — всё ушло на кэш и данные.

Теперь мы открываем еще одну вкладку, что при этом случается? Чтобы найти память, система вынуждена освободить часть чистых страниц кэша и отдать их под данные приложения — ведь данные которые там лежали, можно снова загрузить с диска (это ведь «чистые» страницы!).

Но в этих страницах был ИСПОЛЬЗУЕМЫЙ код — иначе бы они не подтянулись в кэш.

А если бы у нас был настоящий swap-файл?

На основе учета частоты обращения к различным страницам, система скорей всего не освободила бы страницу с кодом, а поместила в swap данные наиболее давно не использовавшихся вкладок. И вместо постоянного чтения с диска, у нас случились бы одна запись и одно чтение — причем именно в момент обращения к выгруженной в swap вкладке.

Для этого, пока поднятая из swap-файла страница не поменялась, место, которое страница занимала в swap-файле, будет по возможности за ней удерживаться и не считается «освобожденным» пока страница не изменится. Это означает, что в случае, если у вас большой swap-файл, редко читаемые и не изменившиеся данные могут «уехать в swap» и многократно доставаться оттуда по мере надобности — то есть в нормальной ситуации, swap работает по принципу «одна запись, много чтений«.

А если swap-файл маленький, то начинается «веселье» с постоянным записью-чтением в swap-файл.

Какие выводы можно сделать из всего вышеописанного?

Swap-файл может считаться используемым даже если все данные из него уже подняты обратно в память.

Малый размер swap-файла вреден — он не позволяет системе работать эффективно, поскольку увеличивает объем непродуктивного I/O

Резюме?

Это прекрасно, когда объем оперативной памяти достаточно велик, чтобы вместить и весь необходимый кэш, и данные. Но если у вас бюджетная система с 8 … 16ГБ оперативной памяти (не говоря уж об ультрабюджетных ноутбуках с распаянными и нерасширяемыми 4GB), то swap достаточного объема (не менее 1 x ) это «то, что доктор прописал».

И достаточный размер swap-файла на быстром накопителе (кто сказал NVMe?) на бюджетном ноутбуке может очень хорошо увеличить производительность системы, особенно если вы любитель держать много открытых вкладок, документов, рисунков в графическом редакторе и т.д.

Источник

Для чего нужен swap в linux

SWAP – один из механизмов виртуальной памяти, при котором отдельные фрагменты памяти (обычно неактивные) перемещаются из ОЗУ во вторичное хранилище (отдельный раздел или файл), освобождая ОЗУ для загрузки других активных фрагментов памяти.

Более подробно о механизме своппинга можно прочитать в Википедии.

Дополнительно SWAP используется при организации режима сна (hibernation или suspend to disk). При этом в SWAP сохраняется образ оперативной памяти.

Размещение

SWAP может быть размещен на разделе диска, в файле или в RAM. Исторически в Linux SWAP размещался на разделе, но в современных дистрибутивах производительность SWAP-файла не уступает SWAP-разделу. Однако стандартный установщик Ubuntu (до версии 17.04) не умеет создавать SWAP-файл при установке и выдает предупреждение, если SWAP-раздел не определен при разметке диска. Начиная с версии 17.04, Ubuntu предлагает по умолчанию создавать SWAP в файле (объем определяется как 5% от свободного на диске места, но не более 2 Гб). Использование SWAP-файла имеет некоторые преимущества: он не занимает отдельный раздел, его легко создать, изменить его размер или удалить.

Дополнительно при выборе размещения SWAP нужно учитывать, что не все файловые системы позволяют использовать прямую адресацию блоков SWAP-файла. Так, к примеру, нельзя использовать SWAP в файле на разделе с файловой системой btrfs(по состоянию на середину 2017).

Безопасность

При работе с секретными/зашифрованными данными часть этих данных в процессе работы либо при гибернации может оказаться в SWAP в расшифрованном виде. В таких случаях рекомендуется шифровать не только данные, но и сам SWAP. Однако нужно учитывать, что у режима сна при шифровании SWAP могут возникнуть сложности.

Размер

В Интернете можно найти множество рекомендаций по определению размера SWAP, однако универсального ответа не существует.

При определении размера SWAP следует учесть следующие аспекты:

В зависимости от ответов на эти вопросы рекомендации по размеру SWAP будут значительно различаться.

При работе с секретными (зашифрованными) данными стоит либо шифровать SWAP, либо рассмотреть вариант с отказом от SWAP вовсе (зависит от размера оперативной памяти). Стоит также рассмотреть вариант с шифрованием всего диска.

Создание SWAP на разделе диска

Разобравшись с требованиями к SWAP, можно приступить к его созданию или изменению.
Ядро Linux может работать с несколькими частями SWAP. Поэтому если вы решили, что созданного при установке системы SWAP-раздела недостаточно, то стоит создать дополнительный SWAP (выделить место под раздел или файл). Однако нужно учитывать, что для гибернации нужен непрерывный блок SWAP, который должен иметь размер больший, чем оперативная память.
К примеру, у нас есть раздел /dev/sdc2 (ваше имя раздела может отличаться). Создадим на нем необходимую структуру данных для работы SWAP:

Подключим раздел как SWAP:

Проверить результат можно, посмотрев на вывод команды

Сделаем автомонтирование SWAP-раздела при запуске системы. Узнаем UUID раздела:

Теперь пропишем строку в /etc/fstab

SWAP с динамически изменяемым размером

Hibernate (suspend to disk, гибернация)

О настройке режима гибернации можно прочитать здесь.

Параметр vm.swappiness

Скорректировать значение, применяемое при загрузке системы, можно, указав в файле /etc/sysctl.conf значение vm.swappiness. Пример:

Мгновенно применить эту настройку можно с помощью следующей команды:

Актуальное значение, используемое ядром в настоящее время, можно просмотреть или изменить в /proc/sys/vm/swappiness.

Изменения в /proc/sys/vm/swappiness будут сброшены при следующей перезагрузке.

Какое значение выбрать?

Маленькое значение vm.swappiness (минимальное значение: 0) будет заставлять ядро использовать больше оперативной памяти под память процессов (в ущерб буферам и кэшам), тогда как большое значение (максимальное значение: 100) будет выделять больше памяти под кэши и буфера (в ущерб памяти для процессов).

Нужное вам значение, скорее всего, стоит подбирать экспериментально.

Источник

В защиту swap’а [в Linux]: распространенные заблуждения

Прим. перев.: Эта увлекательная статья, в подробностях раскрывающая предназначение swap в Linux и отвечающая на распространённое заблуждение на этот счёт, написана Chris Down — SRE из Facebook, который, в частности, занимается разработкой новых метрик в ядре, помогающих анализировать нагрузку на оперативную память. И начинает он своё повествование с лаконичного TL;DR…

Предисловие

Работая над улучшением и использованием cgroup v2, я успел поговорить со многими инженерами об их отношении к управлению памяти, особенно о поведении приложения под нагрузкой и об эвристическом алгоритме операционной системы, используемым «под капотом» для управления памятью.

Повторяющейся темой этих обсуждений стал swap. Тема swap активно оспаривается и плохо понимается даже теми, кто проработал с Linux долгие годы. Многие воспринимают его как нечто бесполезное или очень вредное — мол, это пережиток прошлого, когда памяти было мало и диски являлись необходимым злом, предоставляющим столь нужное пространство для подкачки. И до сих пор, все последние годы, я достаточно часто наблюдаю споры вокруг этого утверждения: немало дискуссий провёл и я сам с коллегами, друзьями, собратьями по индустрии, помогая им понять, почему swap — это по-прежнему полезная концепция на современных компьютерах, имеющих гораздо больше физической памяти, чем в былые времена.

Широкое недопонимание существует и насчёт предназначения swap’а: многие люди видят в нём лишь «медленную дополнительную память» для использования в критических ситуациях, но не понимают его вклад в адекватное функционирование операционной системы в целом при нормальной нагрузке.

Многие из нас слышали такие распространённые фразы о памяти: «Linux использует слишком много памяти», «swap должен быть вдвое больше размера физической памяти» и т.п. Эти заблуждения легко развеять и их обсуждения стали более точными в последние годы, однако миф о «бесполезном» swap гораздо больше завязан на эвристику и таинство, которые не поддаются объяснению с простой аналогией, — для его обсуждения требуется более глубокое понимание управления памятью.

Введение

Сложно говорить, почему наличие swap’а и перемещение в него страниц памяти — хорошо при нормальной работе, не разделяя понимание некоторых базовых нижележащих механизмов в управлении памятью в Linux, поэтому давайте убедимся, что говорим на одном языке.

Типы памяти

В Linux существует множество различных типов памяти, и у каждого из этих типов есть свои свойства. Понимание их особенностей — ключ к пониманию, почему swap важен.

Например, есть страницы («блоки» памяти, обычно по 4k), ответственные за хранение кода для каждого процесса, запущенного на компьютере. Есть также страницы, ответственные за кэширование данных и метаданных, относящихся к файлам, к которым обращаются эти программы для ускорения своих обращений в будущем. Они являются частью страничного кэша [page cache], и далее я буду на них ссылаться как на файловую [file] память.

Есть и другие типы памяти: разделяемая память, slab-память, память стека ядра, буферы и иные, — но анонимная память и файловая память известны лучше других и просты для понимания, поэтому именно они будут использоваться в примерах, которые, впрочем, равносильно применимы и к другим типам.

Память с высвобождением и без

В размышлениях о конкретном типе памяти одним из главных вопросов становится возможность её высвобождения. «Высвобождение» [reclaim] означает, что система может, без потери данных, удалить страницы этого типа из физической памяти.

Для некоторых типов страниц это сделать весьма просто. Например, в случае чистой [clean], т.е. немодифицированной, памяти страничного кэша мы просто кэшируем для лучшей производительности то, что уже есть на диске, поэтому можем сбросить страницу без необходимости в каких-либо специальных операциях.

Для некоторых типов страниц это возможно, но непросто. Например, в случае грязной [dirty], т.е. модифицированной, памяти страничного кэша мы не можем просто сбросить страницу, потому что на диске ещё нет произведённых модификаций. Поэтому необходимо или отказаться от высвобождения [reclamation], или перенести наши изменения обратно на диск перед тем, как сбрасывать эту память.

Для некоторых типов страниц это невозможно. Например, упомянутые раньше анонимные страницы могут существовать только в памяти и никаком ином резервном хранилище, поэтому их необходимо хранить здесь (т.е. в самой памяти).

О природе swap’а

Если поискать объяснения, зачем нужен swap в Linux, неизбежно находятся многочисленные обсуждения его предназначения просто как расширения физической RAM для критических случаев. Вот, например, случайный пост, который я вытащил из первых результатов в Google по запросу «what is swap»:

«По своей сути swap — это экстренная память; запасное пространство для случаев, когда система на какое-то время нуждается в большем количестве физической памяти, чем доступно в RAM. Она считается «плохой» в том смысле, что медленная и неэффективная, и если системе постоянно требуется использовать swap, очевидно, ей не хватает памяти. [..] Если у вас достаточно RAM для удовлетворения всех потребностей и вы не ожидаете её превышения, вы можете прекрасно работать и без swap-пространства».

Поясню, что я вовсе не обвиняю автора этого комментария за содержимое его поста — это «общеизвестный факт», признаваемый многими системными администраторами Linux и являющийся, пожалуй, одним из наиболее вероятных ответов на вопрос о swap’е. К сожалению, это вдобавок и неправильное представление о предназначении и использовании swap’а, особенно на современных системах.

Как я уже писал выше, высвобождение анонимных страниц «невозможно», поскольку анонимные страницы по своей природе не имеют резервного хранилища, к которому можно обратиться при удалении данных из памяти, — таким образом, их высвобождение приведёт к полной утере данных из соответствующих страниц. Однако… что будет, если мы смогли бы создать такое хранилище для этих страниц?

Вот именно для этого и существует swap. Swap — область хранения для этих, кажущихся «невысвобождаемыми» [unreclaimable], страниц, позволяющая отправлять их на устройство хранения по запросу. Это означает, что их можно начинать считать такими же доступными для высвобождения, как и их более простые в этом смысле друзья (вроде чистых файловых страниц), что позволяет эффективнее использовать свободную физическую память.

Swap — это преимущественно механизм для равного высвобождения, а не для срочной «дополнительной памяти». Не swap замедляет работу вашего приложения — замедление происходит из-за начала совокупной конкуренции за память.

Итак, в каких же ситуациях это «равное высвобождение» будет оправданно выбирать высвобождение анонимных страниц? Вот абстрактные примеры некоторых не самых редких сценариев:

Что происходит с использованием swap и без него

Давайте посмотрим на типовые ситуации и к чему они приводят при наличии и отсутствии swap. О метриках «конкуренции за память» я рассказываю в докладе про cgroup v2.

Без конкуренции или с малой конкуренцией за память

С умеренной или высокой конкуренцией за память

При временных всплесках в потреблении памяти

Окей, я хочу системный swap, но как его настроить для конкретных приложений?

Вы же не думали, что в этой статье не будет упоминаний использования cgroup v2?

И в этом вопросе нельзя просто положиться на OOM killer. Потому что OOM killer вызывается только в самых критичных ситуациях, когда система уже оказалась в значительно нездоровом состоянии и, возможно, находилась в нём некоторое время. Необходимо самостоятельно и оппортунистически разрешить ситуацию ещё до того, как задумываться об OOM killer’е.

Тем не менее, выявить давление на память достаточно трудно с помощью традиционных счётчиков памяти в Linux. Нам доступно нечто, что каким-то образом относится к проблеме, однако скорее по касательной: потребление памяти, количество операций сканирования страниц и т.п. — и по одним этим метрикам очень трудно отличить эффективную конфигурацию памяти от той, что приводит к конкуренции за память. У нас есть группа в Facebook, возглавляемая Johannes’ом и работающая над новыми метриками, упрощающими демонстрацию давления на память, — это должно помочь нам в будущем. Больше информации об этом можно получить из моего доклада про cgroup v2, где я начинаю подробнее рассказывать об одной из метрик.

Тюнинг

Сколько же swap’а мне тогда нужно?

В общем случае минимальное количество swap-пространства, требуемого для оптимального управления памятью, зависит от количества анонимных страниц, которые привязаны к пространству памяти и к которым редко обращается приложение, а также от стоимости высвобождения этих анонимных страниц. Последнее — это в большей степени вопрос о том, какие страницы больше не должны удаляться, чтобы уступить место тем анонимным страницам, к которым редко обращаются.

Если у вас достаточно дискового пространства и свежее (4.0+) ядро, большее количество swap’а почти всегда лучше, чем меньшее. В более старых ядрах kswapd — один из процессов ядра, что отвечает за управление swap’ом, — исторически слишком усердствовал в перемещении памяти в swap, делая это тем активнее, чем больше swap’а было доступно. В последнее время поведение swapping’а при наличии большого swap-пространства значительно улучшили. Так что, если вы работаете с ядром 4.0+, большой swap не приведёт к чрезмерному swapping’у. В общем, на современных ядрах нормально иметь swap размером в несколько гигабайт, если такое пространство у вас есть.

Если же дисковое пространство ограничено, ответ в действительности зависит от компромисса, на который вы готовы пойти, и особенностей окружения. В идеале у вас должно быть достаточно swap’а, чтобы система оптимально функционировала при нормальной и пиковой (по памяти) нагрузке. Рекомендую настроить несколько тестовых систем с 2-3 Гб swap’а или более и понаблюдать, что происходит на протяжении недели или около того в разных условиях нагрузки (на память). Если на протяжении этой недели не случалось ситуаций резкой нехватки памяти, что означает недостаточную пользу такого теста, всё закончится занятостью swap’а небольшим количеством мегабайт. В таком случае, пожалуй, разумно будет иметь swap хотя бы такого размера с добавлением небольшого буфера для меняющихся нагрузок. Также atop в режиме логирования в столбце SWAPSZ может показать, страницы каких приложений попадают в swap. Если вы ещё не используете эту утилиту на своих серверах для логирования истории состояний сервера — возможно, в эксперимент стоит добавить её настройку на тестовых машинах (в режиме логирования). Заодно вы узнаете, когда приложение начало перемещать страницы в swap, что можно привязать к событиям из логов или другим важным показателям.

Ещё стоит задуматься о типе носителя для swap’а. Чтение из swap имеет тенденцию быть очень случайным, поскольку нельзя уверенно предсказать, у каких страниц будет отказ и когда. Для SSD это не имеет особого значения, а вот для вращающихся дисков случайный ввод/вывод может оказаться очень дорогим, поскольку требует физических движений. С другой стороны, отказы у файловых страниц обычно менее случайны, поскольку файлы, относящиеся к работе одного запущенного приложения, обычно менее фрагментированы. Это может означать, что для вращающегося диска вы можете захотеть сместиться в сторону высвобождения файловых страниц вместо swapping’а анонимных страниц, но, опять же, необходимо протестировать и оценить, как будет соблюдаться баланс для вашей рабочей нагрузки.

Для пользователей ноутбуков/десктопов, желающих использовать swap для перехода в спящий режим [hibernate], этот факт также необходимо учитывать, поскольку swap-файл тогда должен как минимум соответствовать размеру физической оперативной памяти.

Какой должна быть настройка swappiness?

Это означает, что vm.swappiness — это по существу просто соотношение дорогой анонимной памяти, которую можно высвобождать и приводить к отказам, в сравнении с файловой памятью для вашего железа и рабочей нагрузки. Чем ниже значение, тем активнее вы сообщаете ядру, что редкие обращения к анонимным страницам дороги для перемещения в swap и обратно на вашем оборудовании. Чем выше это значение, тем вы больше говорите ядру, что стоимость swapping’а анонимных и файловых страниц одинакова на вашем оборудовании. Подсистема управления памятью будет по-прежнему пытаться решить, помещать в swap файловые или анонимные страницы, руководствуясь тем, насколько «горяча» память, однако swappiness склоняет подсчёт стоимости в пользу большего swapping’а или большего пропуска кэшей файловой системы, когда доступны оба способа. На SSD-дисках эти подходы практически равны по стоимости, поэтому установка vm.swappiness = 100 (т.е. полное равенство) может работать хорошо. На вращающихся дисках swapping может быть значительно дороже, т.к. в целом он требует случайного чтения, поэтому вы скорее всего захотите сместиться в сторону меньшего значения.

Реальность же в том, что большинство людей не имеют представления о том, чего требует их железо, поэтому настроить это значение, основываясь лишь на инстинкте, затруднительно — это вопрос, требующий личного тестирования с разными значениями. Можно также заняться анализом состава памяти вашей системы, основных приложений и их поведения в условиях небольшого высвобождения памяти.

Источник

Поделиться с друзьями
Windorez.ru - главный по компьютерам